The generator matrix 1 0 0 1 1 1 X+2 1 1 2 1 X+2 1 2 1 X+2 X+2 1 X 2 1 1 2 1 X+2 1 1 1 1 1 1 1 1 2 2 1 2 1 2 1 X+2 1 X+2 1 1 0 1 X 0 X X+2 1 1 1 X+2 X+2 1 1 1 2 0 1 0 0 1 X+1 1 X 1 1 2 0 X+3 1 0 1 2 3 1 1 X X 2 1 1 X+3 X+1 2 X+3 X+2 2 1 2 X 1 X 1 X+2 1 2 1 X+1 0 X+2 X+1 X X+3 1 1 1 1 0 X+3 X+3 1 1 X 3 3 1 0 0 1 1 1 0 1 X+1 X+2 X+1 X 1 X+1 X X+1 X+1 1 X+1 X 3 3 X 1 X 2 X X+1 0 3 X+1 X X X+3 1 X+3 2 X+2 0 X+1 X+3 X+2 X+1 1 X+3 0 1 2 X+3 0 3 X+2 2 2 X+2 0 X+3 2 X X+1 X+1 0 0 0 X 0 X 0 X X 2 0 0 2 2 2 X X+2 X X+2 X+2 2 X+2 X 2 X+2 0 X 2 X+2 0 X+2 X X+2 X X X+2 X 2 X 2 0 X+2 0 X 0 2 2 0 0 X X+2 2 X X 2 2 X 2 X 0 0 0 0 0 X X X+2 0 X X+2 0 0 X+2 0 0 X+2 0 X 0 X 2 2 2 X 2 2 X X 0 X X+2 2 X+2 X 2 X X+2 X+2 X X X+2 0 X X+2 X+2 X+2 0 2 0 X+2 X+2 X+2 0 X+2 2 0 2 0 X+2 X 0 0 0 0 0 2 0 2 0 2 2 2 2 2 2 2 0 2 0 0 0 2 2 2 2 2 0 2 2 2 2 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 2 0 2 2 0 2 2 2 2 2 2 0 0 2 generates a code of length 60 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 52. Homogenous weight enumerator: w(x)=1x^0+341x^52+248x^53+796x^54+596x^55+1330x^56+932x^57+1739x^58+1320x^59+2010x^60+1280x^61+1662x^62+940x^63+1241x^64+580x^65+688x^66+208x^67+275x^68+32x^69+94x^70+8x^71+44x^72+13x^74+6x^76 The gray image is a code over GF(2) with n=240, k=14 and d=104. This code was found by Heurico 1.16 in 98 seconds.